“NAD+ is used by five hundred different enzymes. Without any NAD+, we’d be dead in 30 seconds”
– Dr. David Sinclair[i]
NAD+
烟腺核苷酸,通常称为NAD是一个最重要的辅酶发现,在人身上。[ii] NAD+ is derived from Vitamin B3, also known as niacin, through various biosynthetic pathways in cells. Found in the mitochondria of all living cells, the coenzyme is scientifically proven to boost the activity of all seven sirtuins.[iii] 去是一类蛋白质NAD+依赖,这意味着他们需要NAD+作为一个共同基功能正常。 当NAD水平很高,去成为更加活跃,支持细胞的功能。[iv]
In recent decades, NAD+ has gained significant global attention in biomedical research, due to its potential to improve cellular health, provoking implications for ageing, neurodegenerative diseases, metabolic disorders, and other health conditions.[v]
从本质上讲,NAD+负责各种关键的细胞功能,包括细胞生长、代谢、DNA修复,并最终的生存,使得NAD水平的科学认可的因素的影响老龄化的过程。[vi] 这是由于影响它有在七个去.
随着年龄的增长,自然水平的NAD+在我们的身体下降。 证据表明,NAD的水平减少大约50%,每20年。 这表明,当人们都在50岁,他们估计有一半的NAD+因为他们没有在他们的青年。[vii]
减少NAD水平相关联的是一个范围广泛的老龄问题的迹象,包括代谢紊乱、神经退行性疾病,睡眠问题,耗尽能量和皱纹或次老龄问题皮肤的肌肉功能和恢复和行使性能。[viii]
虽然NAD+可以推动通过饮食,[ix] 它不会完全复苏不足的水平。 酰胺单核苷酸(NMN)和Dihydronicotinamide单核苷酸(NMNH),这是减少NMN,两者都属于家的NAD+提高前体,支持补充NAD+在体内的水平。[x]
A Deeper Dive into NAD+
The Molecular Structure:
NAD+ serves as a coenzyme found in all living cells, from simple bacteria to complex organisms like humans.[xi] Structurally, it consists of two nucleotides joined by phosphate groups.[xii] What renders NAD+ indispensable is its role as a mediator in redox reactions, facilitating the transfer of electrons between molecules during metabolic processes. This dual nature of NAD+—alternating between its oxidized (NAD+) and reduced (NADH) forms—makes it a versatile participant in cellular metabolism.[xiii]
Fuelling Cellular Energy:
One of NAD+’s primary roles lies in energy metabolism. Within the mitochondria, which is the powerhouse of the cell, NAD+ acts as a coenzyme in crucial reactions like glycolysis, the citric acid cycle, and oxidative phosphorylation. During glycolysis, glucose breakdown yields NADH, which carries high-energy electrons to the electron transport chain, driving ATP synthesis. In essence, NAD+ serves as a conduit for converting the chemical energy stored in nutrients into the currency of cellular energy, ATP.
Beyond Energy Production:
However, NAD+’s significance transcends mere energy production. It also serves as a co-substrate for various enzymes involved in DNA repair, gene expression, and cell signalling pathways.[xiv] For instance, enzymes such as sirtuins, which regulate cellular processes like gene transcription, apoptosis, and stress response, depend on NAD+ for their activity.[xv] Moreover, NAD+ plays a pivotal role in maintaining genomic stability by participating in DNA repair mechanisms, thus safeguarding cells against mutations and genomic aberrations.[xvi]
The NAD+ Decline
Despite its critical functions, NAD+ levels decline with age, a phenomenon linked to the ageing process and age-related diseases.[xvii] Factors like poor diet, chronic stress, and environmental toxins can further exacerbate this decline. Reduced NAD+ levels compromise cellular functions, impairing energy metabolism, weakening DNA repair mechanisms, and compromising cellular resilience.[xviii] Consequently, restoring NAD+ levels has emerged as a promising strategy for promoting health and longevity.
NAD+ stands as a foundation of cellular health, governing essential processes that sustain life. Its decline with age emphasises its significance in aging and age-related diseases, prompting interest in therapeutic interventions aimed at restoring NAD+ levels. As research continues to unravel the intricacies of NAD+ biology, we are armed with the most efficient NAD+ precursors, to ensure we maximise the potential of our NAD+ levels.
To shop our NAD+ boosting supplements, Pure NMN and Super NMNH click here!
References:
[i] Sinclair, D & LaPlante, M 2019, 寿命:为什么我们年龄和为什么我们没有到, 柯林斯出版社,爱尔兰都柏林,爱尔兰,第134.
[ii] Bieganowski、P&Brenner、C2004年发现的烟酰胺核苷作为营养和保守的NRK基因设立一个Preiss处理程序的独立的路线NAD+在真菌和人类, 细胞, vol。 117,没有。 4,pp.495-502.
[iii] Sinclair, D & LaPlante, M 2019, 寿命:为什么我们年龄和为什么我们没有到, Harper Collins Publishers, Dublin, Ireland, pp. 133-135.
[iv] Verdin, E 2014, ‘Sirtuins, NAD+, and Aging’, Trends in Endocrinology & Metabolism, vol. 25, no. 3, pp. 219-226.
[v] Sinclair, D & LaPlante, M 2019, 寿命:为什么我们年龄和为什么我们没有到, 柯林斯出版社,爱尔兰都柏林,爱尔兰,第134.
[vi] 最近的研究成单核苷酸酰胺和老龄问题'2022年, 自然组合,第一卷。 1,pp.1.
[vii] 阴影,C2020年,'背后的科学NMN–一个稳定、可靠的NAD+活化剂和抗衰老分子', 中西医结合, vol。 19,没有。 1.
[viii] 最近的研究成单核苷酸酰胺和老龄问题'2022年, 自然组合,第一卷。 1,pp.1.
[ix] Sinclair, D & LaPlante, M 2019, 寿命:为什么我们年龄和为什么我们没有到, Harper Collins Publishers, Dublin, Ireland, pp. 135.
[x] 刘、Y、罗、C、Li、T、张,W,宗,Z,Liu X&邓,H(2021),'减单核苷酸酰胺(NMNH)有效提高NAD+和禁止显示个人的糖酵解,TCA循环,以及细胞的增长, 杂志的蛋白质组学的研究, vol。 20中,没有。 5,pp.2596-2606.
[xi] Sinclair, D & LaPlante, M 2019, 寿命:为什么我们年龄和为什么我们没有到, 柯林斯出版社,爱尔兰都柏林,爱尔兰,第134.
[xii] 阴影,C2020年,'背后的科学NMN–一个稳定、可靠的NAD+活化剂和抗衰老分子', 中西医结合, vol。 19,没有。 1.
[xiii] Berg, J. M, Tymoczko, J. L, & Gatto, G. J 2019, ’Biochemistry‘, W. H. Freeman, ed. 9.
[xiv] Sinclair, D & LaPlante, M 2019, 寿命:为什么我们年龄和为什么我们没有到, Harper Collins Publishers, Dublin, Ireland, pp. 133-135.
[xv] Sinclair, D & LaPlante, M 2019, 寿命:为什么我们年龄和为什么我们没有到, Harper Collins Publishers, Dublin, Ireland, pp. 133.
[xvi] Sinclair, D & LaPlante, M 2019, 寿命:为什么我们年龄和为什么我们没有到, Harper Collins Publishers, Dublin, Ireland, pp. 133-135.
[xvii] Sinclair, D & LaPlante, M 2019, 寿命:为什么我们年龄和为什么我们没有到, Harper Collins Publishers, Dublin, Ireland, pp. 133-135.
[xviii] Sinclair, D & LaPlante, M 2019, 寿命:为什么我们年龄和为什么我们没有到, Harper Collins Publishers, Dublin, Ireland, pp. 133-135.